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Telomerase-reverse transcriptase (TERT) plays an essential catalytic role in maintaining
telomeres. However, in animal systems telomerase plays additional non-telomeric
functional roles. We previously screened an Arabidopsis cDNA library for proteins that
interact with the C-terminal extension (CTE) TERT domain and identified a nuclear-
localized protein that contains a RNA recognition motif (RRM). This RRM-protein forms
homodimers in both plants and yeast. Mutation of the gene encoding the RRM-protein
had no detectable effect on plant growth and development, nor did it affect telomerase
activity or telomere length in vivo, suggesting a non-telomeric role for TERT/RRM-
protein complexes. The gene encoding the RRM-protein is highly expressed in leaf
and reproductive tissues. We further screened an Arabidopsis cDNA library for proteins
that interact with the RRM-protein and identified five interactors. These proteins are
involved in numerous non-telomere-associated cellular activities. In plants, the RRM-
protein, both alone and in a complex with its interactors, localizes to nuclear speckles.
Transcriptional analyses in wild-type and rrm mutant plants, as well as transcriptional
co-analyses, suggest that TERT, the RRM-protein, and the RRM-protein interactors may
play important roles in non-telomeric cellular functions.

Keywords: telomerase, nuclear poly(A)-binding protein, telobox, metallothionein 2A, MODIFIER OF snc1, putative
nuclear DNA-binding protein G2p, oxidation-related zinc finger 2 protein, BiFC

INTRODUCTION

Telomeres Q4are nucleoprotein structures at the ends of eukaryotic chromosomes, distinguishing
these ends from double strand DNA breaks (DDBs) and protecting them from the DNA damage
repair (DDR) machinery. Due to the “end replication problem” (Olovnikov, 1971; Watson, 1972;
Olovnikov, 1973) telomeres are shortened in each round of replication until they are too short to
function, leading to cell senescence (Levy et al., 1992) and apoptosis (Harley et al., 1990; Counter
et al., 1992). Thus, telomeres limit cellular proliferative capacity and act as a biological “clock.”
On the other hand, in cells with high proliferative need such as animal embryonic, stem, and
cancer cells (reviewed in Blasco, 2005), or plant meristemic cells (Fitzgerald et al., 1996), telomere
shortening is compensated by the action of telomerase, a conserved ribonucleoprotein complex
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with a reverse transcriptase subunit (Greider and Blackburn,
1985, 1987). Telomerase consists of two core subunits, telomerase
RNA (TR) and telomerase reverse transcriptase (TERT), that
are associated with several additional proteins not crucial for
enzymatic activity. The TERT subunit has an evolutionary
conserved primary structure which in most organisms can
be further divided into N-terminal domains TEN (telomerase
essential N-terminal) and TRBD (TR binding domain), a central
reverse transcriptase (RT) domain, and a C-terminal extension
(CTE; reviewed in Sykorova and Fajkus, 2009).

The fact that telomerase influences cellular life span and
plays a role in various types of cancer intensified research in
this field. Surprisingly, telomerase in mammalian cells influences
tumourigenesis by additional mechanisms independent of
telomere synthesis (reviewed in Majerska et al., 2011). These so-
called non-telomeric functions of telomerase regulate processes
such as apoptosis, cellular proliferation, and cell cycle regulation,
generally by altering gene expression, or DDR by de novo
telomere addition to the sites of DDB.

For the above reasons it is of great interest to study
mechanisms and interactions through which telomerase is
regulated, and by which telomerase regulates cellular functions
other than telomere synthesis.

Telomerase from Arabidopsis thaliana represents a suitable
model, especially because of the availability of viable T-DNA
insertion mutants that are typically exploited in these types of
studies. Classically, changes in telomere length and telomerase
activity are measured in a particular mutant, which may lead
to direct identification of important telomerase regulators.
However, this approach may not detect interactors crucial
for mediating non-telomeric activities of telomerase. For this
purpose, methods such as tandem affinity purification or cDNA
library screening may be more suitable.

The N- and C-terminal portions of TERT represent potential
interacting targets for telomerase regulatory proteins. The CTE
is highly conserved among vertebrates and plants and contains
regions important for intracellular trafficking of human TERT,
including a nuclear export signal, 14-3-3, and CRM1 binding
sites (Seimiya et al., 2000). In our previous work we screened
for Arabidopsis CTE protein–protein interactions against a cYFP-
tagged Arabidopsis cDNA library in tobacco BY-2 protoplasts and
identified two interacting partners, an armadillo/β-catenin-like
repeat containing protein (encoded by At4g33945) interacting
with CTE in the cytoplasm, and an RRM-containing protein
(encoded by At5g10350; RRM) that interacts with the CTE in
nuclei (Lee et al., 2012).

How telomerase executes its non-canonical activities and
on which levels it regulates expression of its target genes are
poorly understood. One possibility is regulation on the level of
mRNA. The RRM protein belongs to a subfamily of Arabidopsis
nuclear poly(A) binding proteins; that are characterized by
a single RRM domain close to the C-terminus (reviewed in
Eliseeva et al., 2013). The human nuclear poly(A) binding protein
PABPN1 is implicated in a variety of mRNA stabilization and
degradation processes, such as stimulation of poly(A) synthesis
by poly(A) polymerase, protection of growing poly(A) chains
from degradation, defining the length of growing poly(A) chains,

and mRNA export (Wahle and Ruegsegger, 1999; Keller et al.,
2000; Kuhn et al., 2009). In addition to RNA binding, the RRM
domain may be responsible for interactions with other proteins
or DNA (reviewed in Krietsch et al., 2013). These observations
support the hypothesis that the interaction between TERT and
RRM might be a mechanism by which telomerase could affect
many cellular processes.

Here, we present further characterization of the RRM
protein and discuss its potential physiological role in telomerase
involvement in non-telomeric activities. We describe the
interaction profile of the RRM protein and analyze telomere
length, telomerase activity, and changes in gene expression in
T-DNA insertion mutants that disrupt the RRM gene.

MATERIALS AND METHODS

Plant Material
Arabidopsis T-DNA insertion lines SALK_096285 (rrm-1) and
SALK_116646C (rrm-2) were obtained from the Nottingham
Arabidopsis Stock Centre. Both mutant and wild type (Col-0)
A. thaliana seeds were surface sterilized and germinated on 0.8%
(w/v) agar plates supplemented with 1/2 Murashige and Skoog
media (MS; cat. n. M0255.0050; Duchefa1) and 1% (w/v) sucrose.
Seedlings were potted after 7 days and further grown in the
conditions of 16 h light, 21◦C and 8 h dark, 19◦C, illumination
150μmolm−2 s−1. Individual plants from each T-DNA insertion
line were genotyped (see Supplementary Table S1 for primer
sequences) and after selection of homozygous mutant plants,
three subsequent generations were grown.

Telomere Length and Telomerase Activity
Analyses
The terminal restriction fragment (TRF) analysis using Southern
blot hybridization, the conventional TRAP (telomere-repeat-
amplification-protocol) and the quantitative TRAP assays were
performed as described (Fojtová et al., 2011). Mean telomere
length values were calculated using TeloTool software (Gohring
et al., 2014).

Entry Clone Generation
Sequences encoding full-length RRM (At5g10350) and G2p
(At3g51800) proteins were amplified from 7-days-old seedling
cDNA by Phusion HF DNA polymerase (Finnzymes2) according
to the manufacturer’s instructions. Sequences encoding RRM
fragments [RRM-1(1–81); RRM-2(1–169); RRM-3(170–217);
RRM-4(82–217); RRM-5(82–169)] were sub-cloned using KAPA
Taq DNA polymerase (Kapabiosystems3) and a pGADT7-
DEST::RRM construct as a template. Primers used for cloning are
listed in Supplementary Table S1. PCRproducts were precipitated
using PEG and cloned into pDONR/Zeo (Invitrogen4). The
MT2A (At3g09390) coding sequence was sub-cloned into

1https://www.duchefa-biochemie.com/ Q5
2http://www.thermoscientificbio.com/finnzymes
3www.kapabiosystems.com
4http://www.lifetechnologies.com
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pDONR/zeo from the cYFP cDNA library clone 212M1
(Lee et al., 2012). Entry clones encoding HSP70-1 (stock
no. GC104920, At5g02500) and OZF2 (stock no. G10332,
At4g29190; Kayoko et al., 2003Q6 ) were obtained from the
ABRC5. Entry clones encoding AtTERT (At5g16850) fragments
TEN(1–233), RID1(1–271), Fw3N-NLS(229–582), RT(597–987),
and CTE2(958–1123) were prepared previously (Zachova et al.,
2013).

Yeast Two Hybrid Analysis
Yeast two-hybrid experiments were performed using the
MatchmakerTM GAL4-based two-hybrid system (Clontech6).
cDNA sequences encoding RRM protein (full-length and
fragments), TERT fragments, G2p, MT2A, HSP70-1, and OZF2
were subcloned from their entry clones into the destination
vectors pGADT7-DEST and pGBKT7-DEST. Each bait/prey
combination was co-transformed into Saccharomyces cerevisiae
PJ69-4a and yeast two hybrid analysis was performed as described
in Schrumpfová et al. (2014). Protein expression was verified
by immunoblotting using mouse anti-HA (kindly provided
by Dr. Vojtěšek) or mouse anti-myc primary antibodies and
HRP-conjugated anti-mouse secondary antibody (both Sigma-
Aldrich7).

Bimolecular Fluorescence
Complementation and Screening of
cYFP cDNA Library
The constructs nYFP-TERT(CTE2), n/cYFP-TERT(RID1),
and cYFP-RRM were created previously (Lee et al., 2012;
Schrumpfová et al., 2014). The RRM, G2p, HSP70-1, and
OZF2 coding sequences were subcloned from their entry clones
into the destination vector pSAT4-DEST-nEYFP-C1 (Gelvin
laboratory stock number pE3136). To visualize RRM subcellular
localization, the RRM coding sequence was subcloned into
the destination vector p2YGW7, generating a YFP tag at the
N-terminus of the protein. The nYFP-RRM construct was
screened against a cYFP cDNA library for protein–protein
interactions in tobacco BY-2 protoplasts as described (Lee et al.,
2012).

Tobacco BY-2 protoplasts were isolated and transfected as
previously described (Tenea et al., 2009; Lee et al., 2012).
Arabidopsis leaf protoplasts were isolated and transfected as
described by Wu et al. (2009). To label cell nuclei, we co-
transfected a plasmid expressing mRFP fused to the nuclear
localization signal of the VirD2 protein from Agrobacterium
tumefaciens (mRFP-VirD2NLS; Citovsky et al., 2006). To
label nuclear speckles, a pSRp30-RFP nuclear speckles marker
(Lorkovic et al., 2004) was co-transfected. Transfected protoplasts
were incubated in the dark at room temperature overnight,
and observed for fluorescence using a Zeiss AxioImager Z1
epifluorescence microscope (Tobacco BY-2) or a Leica SPE
confocal scanning light microscope (Arabidopsis). As a negative

5http://www.arabidopsis.org/
6www.clontech.com
7www.sigmaaldrich.com

control, we used the constructs nYFP- and cYFP-GAUT10
(At2g20810). Protein expression was tested by immunoblotting
using mouse anti-GFP primary antibody (Roche8) and HRP-
conjugated anti-mouse secondary antibody (Sigma-Aldrich).
Proteins were extracted from protoplasts into an extraction buffer
(50 mM Na2HPO4, 10 mM EDTA, 0.1% Triton X-100, 10 mM 2-
Mercaptoethanol, 1x Proteinase inhibitors cocktail, 1 mMPMSF)
by vortexing.

RNA Isolation and RT-qPCR Analysis
RNA from various Arabidopsis pollen developmental stages
(Honys and Twell, 2004) was isolated using a Plant RNeasy
Kit (Qiagen9) according to the manufacturer’s instructions, and
further purified by DNaseI treatment (TURBO DNA-free kit,
Thermo Fisher Scientific 10). RNA isolation from other tissues
of mutant or wild-type plants and reverse transcription were
performed as described (Fojtová et al., 2011; Ogrocka et al.,
2012). Calli were derived from 7-days-old seedlings, propagated
on cultivation medium with 1 μg ml−1 1-naphthaleneacetic acid
and 1 μg ml−1 2,4-dichlorophenoxyacetic acid, and subcultured
monthly onto fresh medium. Transcript levels relative to a
ubiquitin reference gene were analyzed using FastStart SYBR
Green Master (Roche) and a 7300 Real-Time PCR System
(Applied Biosystems11). A 1 μl aliquot of cDNA was added to the
20 μl reaction mix; the final concentration of each forward and
reverse primer (Supplementary Table S1) was 0.5 μM. Reactions
were performed in triplicate; PCR cycle conditions consisted of
10 min of initial denaturation followed by 40 cycles of 20 s at
95◦C, 30 s at 55◦C, and 1 min at 72◦C. SYBRGreen I fluorescence
was monitored after each extension step. The amount of the
respective transcript was determined for at least two biological
replicates using the ��Ct method (Pfaffl, 2004).

Identification of Genes Co-regulated
with RRM
GENEVESTIGATOR (Nebion AG12) application (Hruz et al.,
2008) was used to identify in silico genes co-regulated with
RRM and genes encoding its interacting partners TERT,
G2P, MOS1, OZF2, HSP70-1, and MT2A. Using this tool,
we first defined conditions under which any of these genes
shows an at least twofold change in transcript levels. We
then searched for genes responding either in a similar
(score 0 to 1) or opposite (score −1 to 0) manner on
the same subset of defined conditions. Genes with a co-
regulation level score either higher than 0.5 or lower than
−0.5 were considered for further analyses. Telobox motifs in
candidate genes were identified in the literature or by manually
searching for the motifs AAACCCT, AACCCTA and their
corresponding reverse complements, in the genomic region
1000 bp upstream of the translation start (ATG) site using

8www.roche.com
9www.qiagen.com
10www.thermofisher.com
11www.appliedbiosystems.com
12https://genevestigator.com/gv/

Frontiers in Plant Science | www.frontiersin.org 3 November 2015 | Volume 6 | Article 985

http://www.arabidopsis.org/
www.clontech.com
www.sigmaaldrich.com
www.roche.com
www.qiagen.com
www.thermofisher.com
www.appliedbiosystems.com
https://genevestigator.com/gv/
http://www.frontiersin.org/Plant_Science/
http://www.frontiersin.org/
http://www.frontiersin.org/Plant_Science/archive


343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

Dokládal et al. Protein interactors of Arabidopsis telomerase

publically available data at NCBI13 and/or the gene datasets
from Wang et al. (2011). Putative protein–protein-interaction
networks were visualized using STRINGv1014 (Szklarczyk et al.,
2015).

RESULTS

Verification of In vivo Interaction
between the RRM Protein and the CTE
Domain of AtTERT
The RRM protein was identified as a putative interaction partner
of AtTERT by screening a cYFP-tagged cDNA library using
BiFC in tobacco BY-2 protoplasts (Lee et al., 2012). To test if
this interaction is independent of the plant system used, we
expressed both tagged partners in Arabidopsis leaf protoplasts
and observed a positive BiFC signal in the nucleus (Figure 1A).
We further employed the yeast-two-hybrid (Y2H) system, but
no interaction was observed in yeast despite the expression of
both proteins (Supplementary Figure S1). These results suggested
that the in vivo interaction between the RRM and the AtTERT
CTE domain was mediated by an additional plant protein
or protein modification absent in yeast cells but present in
telomerase-positive (BY-2) and telomerase-negative (Arabidopsis
leaf) cells.

The C-terminus of the RRM Protein is
Responsible for RRM Dimerization
We tested the ability of the At5g10350 protein containing
a single RRM domain to form homodimers using Y2H and
BiFC analyses (Figures 1B,C). RRM dimerization was observed
using BiFC in tobacco BY-2 protoplasts, where the interaction
provided a pattern similar to that of full length RRM-YFP fusion
protein that co-localized with the pSRp30-RFP nuclear speckles
marker (Figure 1B). We further tested this interaction using
Y2H where the RRM protein showed strong self-interaction
using both histidine and stringent adenine growth selection
(Figure 1C). To determine which part of the RRM molecule
is responsible for dimerization, we prepared five constructs
corresponding to various structural domains of the RRM protein.
We tested them for interaction with full length RRM and with
each other (Figure 1C) by Y2H analysis. The RRM-4(82–217)
fragment comprising the RRM domain and the C-terminus,
and the RRM-3(170–217) fragment with the C-terminus only,
interacted with the full length RRM protein, each other,
and themselves using both histidine and stringent adenine
growth selection, suggesting that the C-terminus is responsible
for protein homodimerization. The fragments RRM-1(1–81) –
N-terminus, RRM-2(1–169) – N-terminus, and RRM-5(82–169)
did not show positive Y2H signals, although their successful
expression was confirmed by immunoblotting (Supplementary
Figure S1).

13http://www.ncbi.nlm.nih.gov/
14http://www.string-db.org/

BiFC Screening of an Arabidopsis cDNA
Library Identified Proteins that Interact
with the RRM Protein
To obtain better insights into possible RRM cellular functions
and its involvement in specific cellular processes, we screened
in BY-2 protoplasts a nYFP-RRM fusion protein against a cYFP
cDNA library (Lee et al., 2012). We identified one cDNA
clone encoding the full length protein Metallothionein 2A
protein (At3g09390; MT2A) and four additional cDNA clones
encoding protein fragments that were in-frame with the YFP tag
(Figure 2): (i) Modifier Of Snc1 (MOS1; At4g24680; fragment
1040–1427 aa); (ii) the putative nuclear DNA-binding protein
G2p (At3g51800; 347–401 aa); (iii) Oxidation Related Zinc Finger
2 (OZF2; At4g29190; 1–68 aa); (iv) Heat Shock Cognate protein
70-1 (HSP70-1; At5g02500; 1–211 aa). In all cases, the interaction
signal resembled nuclear speckles. We generated Y2H and BiFC
constructs of G2p, OZF2, and HSP70-1 bearing the respective
full length coding sequences to confirm interaction with the
RRM protein and to test interaction with AtTERT fragments
(Figure 2B). We were unable to obtain a full length MOS1
(1–1427 aa) construct, either by RT-PCR in our laboratory or
from stock centers. Using the Y2H system we found strong
interaction between OZF2 and RRM proteins, whereas MT2A,
G2p, and HSP70-1 did not interact with RRM. None of the
proteins interacted with any AtTERT fragments (not shown).
Interestingly, using BiFC in tobacco BY-2 protoplasts we found
interaction of the G2p and MT2A proteins with RRM and also
with the N-terminal domain fragment RID1(1–271) of AtTERT
(Figure 2, Supplementary Figure S2), with strong nucleolar and
weak nucleoplasmic localization.

RRM is Highly Expressed in Leaves and
Reproductive Tissues
To characterize RRM expression during plant development, we
investigated the level of RRM transcripts (Figure 3A), including
in telomerase-positive tissues. The transcripts were quantified
in flower buds, calli, leaves, and 7-days-old seedlings of wild-
type plants with a particular interest in detailed seedling analysis
comprising whole seedlings, shoots, roots, and root tips. To
quantify transcript levels in reproductive tissues, we included
five pollen developmental stages (uninucleate microspores, early
bicellular pollen, late bicellular pollen, immature tricellular
pollen, and mature pollen). We observed RRM transcripts in all
tissues tested. However, the greatest RRM transcript abundance
was seen in proliferating tissues – young leaves and reproductive
tissues. During pollen development, RRM transcript abundance
peaked at the time of pollen mitosis I. Our RT-qPCR data
confirmed previously published microarray data15.

Telomere Length and Telomerase Activity
in Homozygous rrm T-DNA Insertion
Lines
To examine the role of RRM in planta, we analyzed Arabidopsis
lines SALK_096285 (rrm-1) and SALK_116646C (rrm-2)

15http://bbc.botany.utoronto.ca/
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FIGURE 1 | SubcellularQ7 localization and dimerization of the RRM protein and verification of its interaction with the CTE domain of AtTERT. (A) BiFC in
Arabidopsis leaf protoplasts confirmed a nuclear interaction of the RRM protein with AtTERT CTE domain. Protoplasts were co-transfected with plasmids encoding
nYFP-tagged TERT(CTE2), cYFP-tagged RRM, and mRFP-VirD2(NLS) to label cell nuclei; nYFP- and cYFP-GAUT10 constructs served as negative control (not
shown). YFP fluorescence is shown in green, mRFP fluorescence in red, and chlorophyll autofluorescence in blue pseudocolor. Scale bar indicates 10 μm.
(B) RRM-YFP co-localizes with a pSRp30-RFP nuclear speckle marker in tobacco BY-2 protoplasts. The same localization pattern was observed for interaction of
nYFP-RRM with cYFP-RRM. YFP fluorescence is shown in green, and mRFP fluorescence of the VirD2(NLS) marker is shown in red. Scale bars indicate 20 μm.
(C) A Y2H system was used to assess RRM dimerization. Two sets of plasmids carrying full-length RRM or indicated RRM segments fused to either the GAL4
DNA-binding domain (BD) or the GAL4 activation domain (AD) were constructed and introduced into Saccharomyces cerevisiae PJ69-4a carrying His3 and Ade2
reporter genes. Co-transformation with an empty vector served as a negative control (not shown). Full-length RRM protein self-interacted on both histidine and
stringent adenine selection plates. The same result was observed for interactions of the RRM-4(82–217) and the RRM-3(170–217) fragments with the full-length
RRM protein, each other, and themselves, suggesting that the RRM-protein C-terminus is responsible for protein homodimerization. None of the other fragments
[RRM-1(1–81), RRM-2(1–169), and RRM-5(82–169)] showed interaction, although their successful expression was confirmed by immunoblotting (Supplementary
Figure S1).

harboring different T-DNA insertions in the RRM gene
(Figure 3B). RT-qPCR results confirmed only rrm-1 as a null
allele, whereas the rrm-2 allele caused only a partial knock-down
of the RRM transcript (Figure 3C). No detectable morphological
differences were observed in root length, rosette diameter,
leaf number, flowering time, or silique number comparing
soil-grown wild-type (Col-0) and three subsequent generations
of homozygous rrm/- plants (not shown). Thus, RRM function
does not appear to be essential for plant growth and development
under these experimental conditions.

Telomere length was determined in three independent
homozygous G3 mutant plants using the TRF analysis. Although
telomeres in both rrm-1/rrm-1 and rrm-2/rrm-2 G3 generation
plants were slightly longer when compared to wild-type plants

(Supplementary Figure S3), a paired Student t-test indicated that
these changes were not significant (the two-tailed p-values equal
0.0575 and 0.0656 for rrm-1 and rrm-2, respectively). Telomerase
activity in G3 generation homozygous rrm-1 and rrm-2 lines
was tested by TRAP (telomere repeat amplification protocol)
in 7-days-old seedlings. No changes in telomerase activity or
processivity were observed using conventional TRAP analysis or
quantitative TRAP analysis (not shown).

Changes in Transcripts Levels in
Homozygous rrm Lines
We analyzed the transcription profiles of genes identified by
our cDNA library screen in homozygous rrm-1 and rrm-
2 Arabidopsis mutant lines (Figure 3C). G2p, MOS1, OZF2,
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FIGURE 2 | BiFCQ8 screening of an Arabidopsis cDNA library identified interaction partners of the RRM protein. (A) Interactions of nYFP-RRM with
cYFP-tagged protein fragments of G2p(347–401), OZF2(1–68), MOS1(1040–1427), HSP70-1(1–211) and full-length MT2A protein identified by screening a
cYFP-tagged cDNA library. Tobacco BY-2 protoplasts were co-transfected with plasmids encoding a mRFP-VirD2NLS nuclear marker, nYFP-RRM, and one of the
five interacting cYFP-tagged proteins. YFP fluorescence is shown in green, and mRFP fluorescence is shown in red. Scale bars indicate 20 μm. (B) Summary of
investigated protein–protein interactions of full-length G2p, OZF2, HSP70-1, and MT2A proteins with full-length RRM protein and TERT fragments. One of the
fragments (RID1) was used in BiFC, all other TERT fragments were investigated using Y2H system. Using the GAL4-based Y2H system in S. cerevisiae PJ69-4a
carrying His3 and Ade2 reporter genes, we confirmed interaction only between OZF2-AD and RRM-BD on both histidine and stringent adenine selection plates.
Other investigated combinations were negative, excluding the OZF2-BD construct that showed false positive interactions, and the HSP70-1-AD construct that was
not expressed. Protein expression was checked by immunoblotting (Supplementary Figure S1). In addition to interaction of MT2A with full-length RRM protein shown
on (A), BiFC analysis in tobacco BY-2 protoplasts revealed positive interactions of MT2A with the TERT(RID1) fragment and also of full-length G2p protein with both
full-length RRM protein, and the TERT(RID1) fragment (Supplementary Figure S2). n.a., not analyzed, n.e., not expressed, c.b.d., cannot be determined. ∗G2p and
MOS1 co-purified with TERT fragments in another work of our group (Majerska et al., manuscript in preparation) Q9.

HSP70-1, and MT2A transcripts were quantified in 21-days-
old leaves, a tissue with high RRM expression (Figure 3C,
right panel). AtTERT transcripts were quantified in 7-days-old
seedlings (Figure 3C, left panel), as there is a very low AtTERT
transcription in Arabidopsis leaves (Ogrocka et al., 2012). G2p
and TERT transcript levels were significantly higher in both
rrm T-DNA insertion lines, suggesting a possible role of RRM
in the regulation of these genes and/or the stability of the
mRNAs encoded by these genes. MOS1, OZF2, HSP70-1, and
MT2A transcripts levels were similar in mutant and wild-type
plants.

Using GENEVESTIGATOR software, we identified 2102 genes
putatively transcriptionally co-regulated with RRM and/or with
at least one of its interacting partners TERT, G2P, MOS1, OZF2,
HSP70-1, and MT2A, using the same conditions subset in a
similar or opposite manner. A narrow subset of 137 genes
showed overlapping co-regulation with at least two of these

genes. We observed that RRM and genes encoding its presumed
interactors were co-regulated with numerous ribosomal protein
genes. Interestingly, most ribosomal protein genes possess a
telobox, a short regulatory motif over-represented in 5′ regions
of Arabidopsis genes with sequences identical to the repeat
(AAACCCT)n of plant telomeres (Regad et al., 1994). Telobox
motifs are also found in promoters of genes involved in DNA
replication (Tremousaygue et al., 1999; Wang et al., 2011).
Because of a possible link between the cell cycle-dependent
regulation of the expression of genes encoding ribosomal proteins
and telomerase (Gaspin et al., 2010), we selected for transcription
analysis a subset of identified co-regulated genes in addition
to genes involved in DNA replication and translation-related
genes with known telobox motifs (Table 1). Five genes showed
a 2- to 4-fold increase of transcript levels in both mutant lines,
and four genes displayed an increase in the homozygous rrm-
1 line only. Interestingly, none of the genes analyzed showed
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FIGURE 3 | Transcription profile of the RRM gene in tissues of wild-type plants and relative transcription of the RRM interactors in rrm mutants.
(A) Level of RRM transcripts in various wild-type (wt) plant tissues and developmental stages calculated relative to 7-days-old seedlings (Col-0) using the ��Ct
method and ubiquitin (ubi10) as a reference gene. (B) Schematic depiction of the RRM gene and position of the T-DNA insertion in homozygous mutant Arabidopsis
lines rrm-1 and rrm-2. (C) Level of transcripts of indicated genes in 7-days-old seedlings (left panel) and 21-days-old leaves (right panel) of rrm-1 and rrm-2 T-DNA
insertion lines calculated relative to wild-type (Col-0) using the ��Ct method and ubi10 as a reference gene. Two-tailed p-values were calculated using the unpaired
t-test (∗p < 0.05; ∗∗p < 0.001; ∗∗∗p = 0.0001, see Supplementary Table S2 for details).

significantly decreased transcript levels in the mutant lines.
Transcript levels of DNA replication-related genes were not
altered in either mutant line, suggesting that the telobox in the
5′ region of these genes is not a critical determinant for RRM
action.

DISCUSSION

The identification of RRM protein as a nuclear interactor
with the CTE domain of AtTERT in tobacco BY2 protoplasts
(Lee et al., 2012) was somehow surprising. However, yeast
genome-wide screens (Askree et al., 2004; Gatbonton et al.,
2006; Ungar et al., 2009) revealed a number of proteins
that influenced telomere length and which were involved in
numerous cellular processes without a known link to telomere
maintenance. Among these were human proteins involved in
RNA metabolism and transcription pathways connected with
non-telomeric functions of telomerase (see Majerska et al.,
2011 for review). Conserved protein structure comprising
the coiled-coil N-terminus, a single internal RRM domain,
and the C-terminal region with nuclear localization signal

classified the RRM protein as a nuclear poly(A) binding
protein (PABPN, Eliseeva et al., 2013). Recently, a RRM
protein was identified as an interactor with AtCSP3 (COLD
SHOCK DOMAIN PROTEIN 3; Kim et al., 2013), and hnRNP-
like proteins (Arabidopsis Interactome Mapping Consortium,
et al., 2011). Here, we verified RRM interaction with the CTE
domain of AtTERT using BiFC in Arabidopsis protoplasts, but
their direct interaction was not observed in yeast. Known
technical differences of both screening systems suggest that
the in vivo interaction is mediated by an additional protein
absent in the yeast cell, or it is facilitated by missing
post-translational modifications. Analysis of T-DNA insertion
mutant lines showed no obvious changes in telomere lengths
and telomerase activity, suggesting that the RRM protein
is not essential for telomere maintenance. The observed
interaction with telomerase may reflect possible non-telomeric
functions.

The localization of the RRM-YFP signal in nuclear speckles
and the observation that all described BiFC RRM interactions
(and interaction with CSP3 protein, Kim et al., 2013) are
nuclear-localized suggest that RRM is in fact a PABPN. Human
PABPN1 localizes to nuclear speckles as a consequence of
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TABLE 1 | Relative transcription levels of genes with identified telobox sequences and/or co-regulated with RRM interactors in homozygous rrm
mutants.

AGI number Gene name rrm-1∗ rrm-2∗ Telobox Reference Co-regulation with RRM and
its interactors
(GENEVESTIGATOR score)a2−ddCt SD 2−ddCt SD

Genes encoding cytoplasmic ribosomal proteins

At1g23290 RPL27a 2.08 0.37 2.56 1.23 Yes In this work RRM (0,73), G2P (0,89),
HSP70-1 (0,78)

At1g72370 RP40 4.72 0.13 3.42 0.22 Yes Tremousaygue
et al., 1999;
Manevski et al.,
2000

RRM (0,75), G2P (0,92),
HSP70-1 (0,77)

At3g04840 RPS3Ae family 1.78 0.10 1.34 0.11 Yes In this work RRM (0,78), G2P (0,89),
HSP70-1 (0,76)

At3g25520 RPL5 1.66 0.07 1.32 0.11 Yes In this work RRM (0,84), G2P (0,90),
HSP70-1 (0,84)

At5g39740 RPL5b 1.41 0.01 1.12 0.13 Yes In this work RRM (0,87), G2P (0,90),
HSP70-1 (0,75)

At3g47370 RPS10p/S20e family 2.30 0.01 1.45 0.10 Yes In this work RRM (0,73), MOS1 (−0,81),
G2P (0,90), HSP70-1 (0,73)

At3g49010 BBC1 3.70 0.55 1.86 0.24 Yes In this work RRM (0,83), G2P (0,92),
HSP70-1 (0,77)

At3g51190 RPL2 family 2.41 0.2 1.89 0.11 Yes In this work n.a.

At3g56340 RPS26e family 1.38 0.03 1.17 0.08 Yes In this work RRM (0,75), HSP70-1 (0,68)

At3g60770 RPS13/S15 family 1.95 0.12 1.44 0.07 Yes In this work RRM (0,78), G2P (0,90),
HSP70-1 (0,80)

At4g00810 RPS60 family 2.39 0.09 2.25 0.10 Yes Tremousaygue
et al., 1999

MOS1 (−0,88)

At4g09800 RPS18C 2.69 0.23 2.35 0.05 Yes Tremousaygue
et al., 1999

No co-regulation

Genes encoding plastid ribosomal proteins

At1g79850 PRPS17 0.68 0.02 1.68 0.28 Yes Tremousaygue
et al., 1999

No co-regulation

At2g33450 PRPL28 2.62 0.55 1.33 0.15 Yes Tremousaygue
et al., 1999

No co-regulation

Genes encoding translation factors

At1g07940 EF1A family 1.88 0.01 0.87 0.01 Yes Tremousaygue
et al., 1999

No co-regulation

At1g54290 TIF SUI1 family 2.77 0.23 2.43 0.34 Yes Tremousaygue
et al., 1999

No co-regulation

DNA replication-related genes

At1g07270 CDC6b 0.98 0.11 1.03 0.08 No In this work No co-regulation

At1g07370 PCNA1 1.13 0.07 1.13 0.11 Yes Manevski et al.,
2000

No co-regulation

At1g44900 MCM2 0.97 0.13 0.99 0.12 Yes In this work No co-regulation

At5g46280 MCM3 0.68 0.02 0.95 0.08 Yes In this work No co-regulation

At2g16440 MCM4 0.94 0.01 0.94 0.06 No In this work No co-regulation

At2g07690 MCM5 0.95 0.07 0.99 0.08 No In this work No co-regulation

At5g44635 MCM6 0.72 0.03 0.90 0.12 Yes In this work n.a.

At4g02060 MCM7 1.03 0.07 0.97 0.13 Yes In this work No co-regulation

Other co-regulated genes

At2g19480 NAP1;2 1.85 0.15 1.42 0.15 Yes In this work RRM (0,79), HSP70-1 (0,75)

At3g54230 SUA 1.54 0.22 1.25 0.09 Yes In this work TERT (0,88), MOS1 (0,95)

At4g17520 Hyaluronan family 0.60 0.21 1.55 0.13 Yes In this work RRM (0,77), G2P (0,93)

At5g14790 ARM superfamily 0.76 0.05 0.87 0.08 No In this work TERT (−0,84)

an.a., data not available; ∗more than twofold change in transcript level (2−ddCt ) is highlighted; SD, standard deviation.

RNA poly(A) binding (Calado and Carmo-Fonseca, 2000). Our
observations indicate a conserved structure-localization relation

of PABPNs across eukaryotic species. Nucleic acid binding of
RRM-containing proteins is often mediated by a pair of RRM
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domains (Deo et al., 1999; Kwon and Chung, 2004). On the other
hand, Xenopus laevis XlePABP2 and Citrus sinensis CsPABPN1,
PABPNs that share similar structure with RRMprotein, both bind
poly(A) as monomers and undergo a dimer-monomer transition
upon poly(A) binding (Song et al., 2008; Domingues et al.,
2015). We visualized RRM protein dimerization in tobacco BY-
2 protoplasts and observed the same nuclear speckle pattern as
with RRM-YFP localization. Moreover, we demonstrated that
RRM protein dimerizes through its C-terminal region. This last
observation contradicts the published dimerization model of
hPABPN1 (Ge et al., 2008), which identified the amino acid
residues responsible for self-interaction within the RRM domain.

We revealed possible connection between RRM and non-
canonical telomerase functions by identifying interaction
partners of RRM. Screening for nYFP-RRM protein–protein
interactions against a cYFP-tagged cDNA library identified five
putative RRM interactors with various annotated functions
such as transcription regulation (OZF2), epigenetic regulation
(MOS1), mRNA catabolism (MOS1), RNA methylation (G2p),
protein nuclear import (G2p), protein folding (HSP70-1),
proteolysis (G2p), cellular copper ion homeostasis (MT2A),
or metabolism (MOS1, HSP70-1). In all five cases, the
interaction localization pattern resembles nuclear speckles,
as observed for RRM-YFP subcellular localization. A G2p-
GFP fusion protein was previously localized in the nucleus
(Zhang et al., 2005). However, the subcellular localization of
other RRM interactors has not previously been described.
Interestingly, other data from our groups showed that G2p
and MOS1 co-purify with TERT (Figure 2, Majerska et al.,
manuscript in preparation) and G2p and MT2A interact
with TERT(RID1) using BiFC in tobacco BY-2 protoplasts
(Figure 2B, Supplementary Figure S2), suggesting co-existence
of TERT, RRM, G2p, MOS1, and MT2A in a multiprotein
complex.

Analysis of telomere length and telomerase activity in
homozygous rrm-1 and rrm-2 T-DNA insertion mutants
indicated that the RRM protein was not important for the
canonical telomeric functions of telomerase. On the other
hand, TERT transcripts were elevated in homozygous rrm
mutants, and TERT and RRM may share binding partners such
as G2p, MOS1, and MT2A. These observations suggest that
RRM plays a role in non-telomeric activities of telomerase.
Interestingly, the G7 generation of a homozygous tert T-DNA
insertion line showed increased OZF2 and MT2A transcript
levels (Amiard et al., 2014). PABPNs are implicated in processes
that might be crucial for post-transcriptional regulation of
gene expression. Our qPCR analyses indicated that RRM
might generally function as a negative regulator of gene
expression, because none of the 34 genes analyzed here showed
significant decrease in transcript levels in homozygous rrm
mutants. Increased levels of TERT and G2p transcripts in
homozygous rrm mutant lines indicated a possible feedback
mechanism in RRM-TERT and RRM-G2p interactions.
Moreover, nine ribosomal and translation-related genes also
showed significantly increased transcript levels in a rrm mutant
background. We have further analyzed these nine genes for
transcript level perturbations across different conditions using

GENEVESTIGATOR. RPL2 transcripts were stable across
various conditions. Interestingly, the transcript levels of the
other eight genes changed more than twofold in response to
salt stress in the myb44 T-DNA insertion line (Jung et al., 2008).
RP40, RPL27A, RPS10p/S20e, BBC1, and RPL2 form a protein
interaction network (STRING database16, Szklarczyk et al.,
2015) and are mutually co-regulated. The RRM interactome,
subcellular localization, and co-regulation profile showing
that the expression of the majority of its co-regulated genes
contain telobox motifs in their promoters, further support the
hypothesis that RRM may function in mediating non-telomeric
(non-canonical) functions of telomerase. DNA replication-
related genes were not co-regulated with genes encoding
RRM or its interactors, and they also did not show changes
in transcript abundance in a homozygous rrm background.
These results suggest that the telobox in promoters of these
genes are not a critical determinant of RRM action. Regulation
of translation-related genes is generally important for the
regulation of protein synthesis and consequently for cell
growth. These genes regulate tumor onset and progression
(reviewed in Loreni et al., 2014), further indicating a possible
link between RRM and its interactors to TERT non-telomeric
functions. Our results support a functional connection between
RRM and its interaction partners in plant regulatory protein
complex(es).

CONCLUSION

The RRM protein was previously identified as an interaction
partner of AtTERT. However, telomere length shortening in
knockout mutant plants was not significant. By screening a
cDNA library using cYFP-RRM as a bait, we identified five
interaction partners; two of them interacted also with TERT
fragments. Investigation of the subcellular localization and
protein structure suggested that RRM-protein may function
as a nuclear poly(A)-binding protein. Transcriptional profiling
revealed a possible involvement of RRM-protein in the regulation
of a subset of ribosomal and translation-related genes. Most
of these genes contain a telobox motif in their promoters.
G2p and TERT transcript levels were significantly higher
in rrm/- knockout mutants, suggesting a possible role for
RRM in the regulation of these genes and/or the stability of
the mRNAs encoded by these genes. Overlaps of the RRM
and TERT interactome, subcellular localization of protein–
protein interactions, and co-regulation profiles support the
hypothesis that RRM may be involved in mediating non-
canonical telomerase functions.
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