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all of which can be found in monosomal fractions 
(Heyer and Moore, 2016). A totally different class of 
fully assembled monosomes is represented by stalled 
80S couples at the initiating AUG codon on various 
mRNAs, which may serve as one of the means of trans-
lational control. Therefore, we wished to understand 
the identity of monosomes in the male gametophyte. 
To do that, we focused on the translation status of five 
mRNAs encoding genes from the tobacco pollen se-
questrome with orthologs in Arabidopsis upon pollen 
hydration and pollen tube growth, in particular a Pec-
tate lyase ortholog of the tomato Lat59 protein (AT59; 
AT1G14420), FAD2 (AT3G12120), PLANT INVERTASE 
FAMILY PROTEIN (AT5G27870), POLLEN-SPECIFIC  
CELL WALL GLYCOPROTEIN (NTP303 ortholog 
SKU5 Similar12; AT1G55570), and POLLEN-SPECIFIC  
LIM DOMAIN CONTAINING PROTEIN (WLIM2B; 
AT3G55770). Note that all selected mRNAs were asso-
ciated predominantly with the EPP fraction at the MPG  
stage (Supplemental Table S1). To follow their trans-
lation status, we applied high-velocity centrifugation 

in a linear Suc density gradient (5%–45%) to two de-
velopmental stages of the male gametophyte, MPG 
and PT4, and separated free ribosomal subunits from 
monosomes and polysomes by Teledyne ISCO sub-
cellular fractionation (Fig. 10). We profiled mRNAs 
associated with polysomes relative to those occurring 
in monosomes as a relative measure of translation ef-
ficiency (Fig. 10A). As expected, polysomal profiling 
confirmed that monosomes vastly dominated in MPG 
with practically no polysomes, as illustrated by the cal-
culated polysome:monosome ratio (P/M = ∼0.09; Fig. 
10B). In contrast, there was a robust increase in polyso-
mal fractions at the expense of monosomes at the PT4 
stage of pollen tube growth (P/M = ∼1; Fig. 10B). This 
clearly illustrates a rapid change from a nonactive to 
an active translational status that must inevitably oc-
cur in the growing pollen tubes.

For further analysis, collected fractions represent-
ing monosomes were used as individual fractions, 
and all polysomal fractions were pooled together 

Figure 9. Dynamics of stored transcripts from sperm cell-expressed and sperm cell-specific genes between POL and EPP up 
to 24 h of in vitro pollen tube growth. Data were derived from an Agilent 44K array chip and validated by qPCR. Error bars 
represent sd among replicates.
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(four to five fractions) to represent the entire polyso-
mal area (Fig. 10). Total RNA was precipitated from 
these monosomal and polysomal fractions using 
SDS:phenol:chloroform and chloroform:isopropanol. 
Quantification of transcripts by RT-qPCR revealed 
that the vast majority of mRNAs that were identi-
fied as being stored in the EPP were associated with 
monosomes at the MPG stage, showing a P/M ra-
tio ranging between 0.14 and 0.38 (Fig. 10C). At the 
PT4 stage, INVERTASE showed a minor shift toward 
polysomes with the P/M ratio increasing by 1.16-fold 
(from 0.06 to 0.07; P > 0.98, Welch’s t test), whereas 
FAD2 remained strongly associated with monosomes 
showing even a small shift toward monosomes (the 
P/M ratio decreased by ∼1.3-fold, from 0.26 to 0.2; 
P > 0.09, Welch’s t test), suggesting a continuous sta-
ble transcript storage even after 4 h of pollen tube 
growth (Fig. 10C). Conversely, AT59 showed a medi-
um shift toward polysomes with a 2.2-fold increase of 
the P/M ratio (from 0.14 to 0.32; P < 0.0018, Welch’s t 
test) at the PT4 stage (Fig. 10C), whereas NTP303 and 
WLIM2B transcripts showed the greatest increases by 
3.6-fold (from 0.38 to 1.36; P < 0.0001, Welch’s t test) 
and 7.6-fold (from 0.14 to 1.06; P < 0.0001, Welch’s t 
test), respectively (Fig. 10C). Remarkably, LC-MS/MS 
proteome data analysis of the EPP and POL fractions 

revealed an almost perfect correlation between the 
monosome-to-polysome shift of the selected tran-
scripts and the increase in protein abundance in POL 
fractions between MPG and PT4 stages, with the ex-
ception of WLIM2B. INVERTASE showed an increase 
in the translation rate from MPG to PT4 by 1.16-fold, 
whereas FAD2 showed a decrease by 1.3-fold (Fig. 
10D). AT59 then showed a 1.5-fold increase in the ef-
ficiency of translation, whereas NTP303 translation 
was enhanced by more than 2.5-fold at the PT4 stage 
(Fig. 10D). These results suggest that the observed 
dynamic changes in the association of various mR-
NAs with monosomes versus polysomes in pollen 
and pollen tubes likely reflect their translatability that 
varies among different developmental stages. Unex-
pectedly, the proteome data obtained for WLIM2B 
at the MPG stage was not reliable between the rep-
licates and, therefore, could not be used further. 
Taken together, our results reveal that there are nu-
merous mRNAs whose translational activity remains 
poor even in mature pollen grains with a reactivated 
translational apparatus. Interestingly, this suggests 
that mRNA-bound monosomes could represent the 
pollen sequestrome pool of stored mRNAs awaiting 
its activation at a specific developmental stage by a 
yet-to-be-elucidated mechanism.

Figure 10. Polysome profiling revealed that monosomes dominate at MPG. A, Experimental workflow. B, Polysome profiles 
from a subcellular fractionation-coupled Suc density gradient showing a dominant monosome peak in the MPG sample and 
only traces of polysomes. At the PT4 stage, the increase in polysome abundance is likely associated with high translation ac-
tivities in pollen tubes. P/M represents a ratio of polysomes versus monosomes calculated per area of occupancy on the plot 
by the two fractions. C, Quantification of transcript occupancy in monosomes versus polysomes of five selected genes at the 
MPG stage and after 4 h of in vitro pollen tube growth (PT4). The P/M ratio represents the translatability rate of each transcript 
from the respective gene at each stage. Asterisks report a statistically significant difference (Welch’s t test, P < 0.05) between the 
P/M ratio at MPG versus PT4 as a metric of induced translation. Error bars represent sd among replicates. D, Quantification of 
the POL/EPP ratio for selected transcripts and the respective proteins during the progamic phase. Error bars represent sd among 
replicates.
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DISCUSSION

Sequestrome Dynamics during Pollen Development and 
the Progamic Phase

Translation regulation has gradually received in-
creased attention as an important regulatory level 
playing an essential role in plant development follow-
ing developmental cues as well as in complex stress 
responses (for review, see Van Der Kelen et al., 2009; 
Muench et al., 2012; Roy and von Arnim, 2013; Salomé, 
2017; Mills et al., 2018). Several studies have aimed 
to identify subsets of actively translated transcripts, 
termed the translatome, using either polysome pro-
filing (Kawaguchi et al., 2004) or translating ribosome 
affinity purification using a FLAG-tagged ribosomal 
protein L18 (FLAG-RPL18; Zanetti et al., 2005). Poly-
some profiling has been used to characterize trans-
latomes during photomorphogenesis (Liu et al., 2012, 
2013) or under heat stress (Yángüez et al., 2013). Trans-
lating ribosome affinity purification has been applied 
to identify condition- or cell-specific translatomes for 
the characterization of translation modulation during 
plant immune responses (Meteignier et al., 2017) or 
in in vivo-growing pollen tubes (Lin et al., 2014). The 
latter study provided interesting insight into selective 
translation during the progamic phase by the identifi-
cation of 519 transcripts selectively loaded onto poly-
somes during pollen tube growth in vivo as a result 
of contact between the male gametophyte and female 
reproductive tissues.

Considering the importance of selective translation 
activation for pollen tube growth, we aimed to get a 
deeper insight into the phenomenon of long-term 
transcript storage and translation in pollen and pol-
len tubes. We wished to extend our previous analyses  
(Honys et al., 2000, 2009) by characterizing the dynam-
ics of translational regulation during tobacco male 
gametophyte development and the subsequent func-
tional progamic phase. Therefore, we separated the ri-
bonucleoprotein complexes by two-step Suc gradient 
centrifugation (Fig. 1; Jurečková et al., 2017) to isolate 
the three types of mRNA-containing ribonucleoprotein 
particles: POL, RNP, and EPP. We defined the EPP tran-
scriptome as the pollen sequestrome, a specific and 
highly dynamic compartment for stored, translation-
ally repressed transcripts clearly distinct from other 
RNA-containing fractions (Fig. 2, E–G).

The quantification of expressed genes (Fig. 2A; Sup-
plemental Fig. S1A) confirmed the general trends of 
previously published profiles of male gametophytic 
gene expression in tobacco (Hafidh et al., 2012a, 2012b; 
Bokvaj et al., 2014), Arabidopsis (Honys and Twell, 
2004; Wang et al., 2008; Qin et al., 2009), and rice (Wei 
et al., 2010) as well as the developmental shift during 
late stages of pollen development (Honys and Twell, 
2004). Despite the reduction of transcriptome com-
plexity toward pollen maturity that was reflected in 
the similar reduction of the translatome, we observed 
an increased abundance of transcripts forming the se-
questrome (Fig. 2, C and D). The sequestrome peaked 

in mature pollen, and this observation was consistent 
with the general concept of reduced translation ac-
tivity accompanied by the storage of presynthesized 
transcripts in this quiescent stage (Mascarenhas, 1993; 
Štorchová et al., 1994; Honys et al., 2000). For exam-
ple, the tobacco highly abundant pollen-specific tran-
script NTP303 (Weterings et al., 1992) encoding cell 
wall glycoprotein (Čapková et al., 1987), shown pre-
viously to be translationally repressed (Wittink et al., 
2000), was found predominantly in the sequestrome 
but gradually redistributed to the polysomal fraction 
following pollen germination (Fig. 3). In fact, NTP303 
was the seventh most abundant sequestered transcript 
in mature pollen. A similar expression and translation 
profile was observed for the other NTP303 homologs 
SKS12 (Fig. 3; Sedbrook et al., 2002) and NTP805 (Sup-
plemental Table S1; Weterings et al., 1995).

Recently, SKS14, one of the Arabidopsis orthologs of  
NTP303, was localized to processing bodies (P-bodies)  
in tobacco pollen (Scarpin et al., 2017). Analogous to 
other organisms, P-bodies were speculated in that 
study to represent the mRNA storage compartment in 
tobacco pollen. However, the observed occurrence of 
NTP303 in P-bodies in pollen was unexpectedly low 
(Scarpin et al., 2017) and corresponded neither to the 
previously published high abundance of NTP303 tran-
script in tobacco pollen and pollen tubes (Štorchová  
et al., 1994; Wittink et al., 2000) nor to the accumulation 
of the majority of this abundant transcript in the EPPs 
(this study). Furthermore, our protein composition 
analysis also did not confirm the suggested hypothesis 
that EPPs may correspond to P-bodies. The DCP1 and 
VCS protein markers of P-bodies (Xu et al., 2006) were  
absent from EPPs in the original proteomic study 
(Honys et al., 2009) as well as in this study (we identified 
VCS associated with nonpolysomal particles only in 
24-h pollen tubes). Last but not least, P-bodies in con-
trast to EPPs are not considered to contain ribosomal 
subunits and translation factors (Chantarachot and 
Bailey-Serres, 2018). Therefore, although the NTP303 
mRNA partially colocalized with P-bodies in the afore-
mentioned study, it seems unlikely that P-bodies rep-
resent the main storage compartment for NTP303 as 
well as for many other quiescent mRNAs, as suggested 
(Scarpin et al., 2017). It is possible that these two as-
semblies coexist in pollen while having distinct func-
tions for its maturation and development.

Ribosomal or ribosome-associated proteins occu-
pied eight of the 10 most abundant proteins in the EPP 
fraction and six out of the 10 most abundant proteins 
in the polysomal fraction (Fig. 5B). The most abundant 
and the most basic proteins, often RPs, were shared by 
EPP and POL fractions (Fig. 4, E and F). Interestingly,  
the most abundant protein in most of the fractions 
was GAPDH subunit C (Zeng et al., 2016). The main 
function of this enzyme is in the glycolytic pathway 
(Sirover, 2011). GAPDH is not only a cytosolic pro-
tein; in human and animal cells, it also was localized 
to the membrane, the nucleus, polysomes, the en-
doplasmic reticulum, and the Golgi (Sirover, 2012). 
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Moreover, GAPDH was shown to bind RNA (Nicholls 
et al., 2012). Therefore, alongside this canonical met-
abolic activity, GAPDH has been implicated also in 
other functions, including transcription, translation, 
and endoplasmic reticulum-to-Golgi protein transport 
(Tristan et al., 2011; Sirover, 2012). If the presence of 
GAPDH subunit C did not result from a contamina-
tion, one could speculate that this protein might fulfill 
one of the above-mentioned roles also in pollen. It was 
even proposed that cytosolic GAPDH might function  
as a sensor for redox signals in yeast, plants, and mam-
mals and as an information hub to transduce the stress 
signals for appropriate adaptive responses (Hildebrandt 
et al., 2015).

In our study, we confirmed the dramatic decline in 
the abundance of transcripts encoding cytosolic ribo-
somal proteins in late pollen development (Fig. 6), a 
phenomenon observed previously in Arabidopsis and 
tobacco pollen (Honys and Twell, 2004; Bokvaj et al., 
2014). This decline was similar for both ribosomal sub-
units. The massive synthesis of ribosomal proteins in 
young pollen grains, soon after the completion of PMI, 
was demonstrated not only by the high abundance of 
RP transcripts in the cell (Bokvaj et al., 2014) but also 
by their prevalence in association with polysomes 
(Fig. 6, A and B), demonstrating their active transla-
tion at this stage and persistence in vast amounts for 
the whole progamic phase (Fig. 7). Translation plays 
an important role during the progamic phase, since 
its inhibition causes a dramatic suppression of pollen  
tube growth (Čapková-Balatková et al., 1980; Hao  
et al., 2005). Therefore, it was not surprising that such 
a transcript down-regulation pattern was not entirely  
followed by other players involved in translation, 
namely some translation initiation factors and various 
forms of the poly(A)-binding proteins (Fig. 6, C–E), as 
also observed previously in Arabidopsis (Honys and 
Twell, 2004). Whereas the expression of transcripts en-
coding eIF2 and eIF3 subunits as well as the eIF6 factor 
also declined in late pollen development, eIF1, eIF4A, 
eIF4E, eIF4G, eIFiso4E, eIFiso4G, eIF5, and eIF5C were 
actively transcribed also during the progamic phase, 
and PABP transcripts were even up-regulated in pollen 
tubes. Since all of the listed eIFs are critically required 
for cap-dependent translation initiation (for review, 
see Valášek, 2012; Browning and Bailey-Serres, 2015; 
Valášek et al., 2017), we believe that the observed dif-
ferences in expression profiles simply reflect the vary-
ing protein stability of these eIFs. Trimetric eIF2 and 
multimeric eIF3 complexes are known to be very sta-
ble, which may markedly reduce the demand for the de 
novo transcription of mRNAs encoding their subunits. 
Interestingly, eIF4B, eIF4G, eIFiso4F, and eIF5B, which 
also were identified in the EPP proteome, were among 
the proteins that were phosphorylated in tobacco ma-
ture pollen and dephosphorylated immediately after 
pollen germination as a consequence of pollen activa-
tion (Fíla et al., 2016). The most abundant eIF in pollen 
and pollen tube fraction proteomes, eIF4A, was con-
stitutively phosphorylated both in the mature pollen 

and throughout the onset of the progamic phase (Fíla 
et al., 2016). Even though more factor-focused analyses 
are required to understand the phosphorylation status 
changes of individual eIFs, these data hint at another 
level of regulation that could occur specifically during 
pollen development.

As expected given the stable composition of EPPs, 
despite the sharp decline in the transcript levels, ribo-
somal proteins persisted in large amounts in growing 
pollen tubes (Fig. 7). In particular, the abundance of 
ribosomal proteins increased during the first 4 h of 
pollen tube growth and then finally decreased in 24-h 
pollen tubes. This pattern closely followed the rate 
of tobacco pollen tube growth (Čapková et al., 1987;  
Hafidh et al., 2012b). A substantial fraction (around 
50% in general) of ribosomal proteins remained associ-
ated with EPPs even during pollen tube growth. This 
finding further confirmed our previously published 
observations that EPPs occurring in the growing pol-
len tube still contain both ribosomal subunits (Honys  
et al., 2009). Unexpectedly, the abundance of ribosomal 
proteins was not uniform during the progamic phase, 
and neither was their distribution among polysomes 
and EPP complexes. Especially, the EPP-POL ratio var-
ied not only for the entire subunits (Fig. 7A) but also 
for individual ribosomal proteins (Fig. 7C) throughout 
the progamic phase. Here, the large ribosomal proteins 
were redistributed more profoundly toward the stor-
age EPP complexes in both PT4 and PT24, whereas the 
small ribosomal proteins remained more often in the 
polysomal fraction (Fig. 7, B and C). Interestingly, even 
though the differential accumulation of ribosomal pro-
teins and ribosome remodeling were documented pre-
viously as part of the response to environmental cues 
and stress (Horiguchi et al., 2012; Tiruneh et al., 2013; 
Wang et al., 2013), these striking observations await 
further explanation. Of note, the most characteristic 
distribution pattern was observed for acidic ribosom-
al proteins (RPP0 and RPP2) as well as for the small 
ribosomal protein RACK1. The acidic ribosomal pro-
tein P0 and phosphoproteins P1 to P3 form a lateral 
stalk structure in the active site of the 60S ribosomal 
subunit (Szick et al., 1998). RACK1 is a soluble, plasma 
membrane-associated or ribosome-bound protein that 
is found in a variety of signaling complexes, suggest-
ing that it links cell regulation and translation (Gibson, 
2012). All these proteins are associated with actively 
translating ribosomes (Szick et al., 1998; Turkina et 
al., 2011; Browning and Bailey-Serres, 2015), and in 
our proteomic data sets, they all remained associated 
predominantly with the polysomal fraction through-
out the progamic phase (Fig. 7C; Supplemental Fig. 
S7; Supplemental Table S6). PABP5 and PABP7 were 
enriched in the polysomal fraction, whereas PABP2 
was enriched in the RNP data set (Supplemental Ta-
ble S6). This is consistent with proposed multiple roles 
of PABP proteins in mRNA storage and translation in 
plants (Goss and Kleiman, 2013). TSN proteins, besides 
their well-documented role in mRNA catabolism in 
stress granules and P-bodies (Gutierrez-Beltran, 2015; 
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Gutierrez-Beltran et al., 2015), have been implicated in 
the stabilization of stress-induced mRNAs in Arabi-
dopsis (Frei dit Frey et al., 2010) and in mRNA storage 
and localization in rice endosperm (Chou et al., 2017). 
Accordingly, the vast majority (87% of protein abun-
dance) of TSN proteins was found outside the polyso-
mal fraction, namely 35% in the EPP fraction and 52% 
in the RNP fraction (Fig. 6H; Supplemental Table S6).

Collectively, the data presented in this section intro-
duced EPP complexes as a distinguishable compart-
ment for mRNA storage in pollen and pollen tubes 
characterized by a specific subset of associated pro-
teins and harboring a dynamic yet distinct set of stored 
stable transcripts, a sequestrome.

Stored Transcript in Sperm Cells

Transcript profiling in late stages of pollen tube 
growth revealed that approximately 6% (151 genes) 
of the EPP stored transcripts at the PT24 time point (a 
more than halfway growth of tobacco pollen tube to-
ward the ovule) are expressed in sperm cells and some 
are sperm cell specific (Fig. 9; Supplemental Tables S11 
and S12). It is likely that not all transcripts associated 
with sperm cells are utilized for sperm cell-related cel-
lular activities prefertilization. We hypothesized that 
some of these stored transcripts could be inherited and 
involved in embryogenesis, for instance. RNA inher-
itance via gametes in plants and its significance are 
still little explored; however, recent studies have pro-
vided a glimpse of its significance (Autran et al., 2011;  
Nodine and Bartel, 2012; Del Toro-De León et al., 2014). 
From the GO analysis of the stored sperm cell tran-
scripts, we identified CHR11 (AT3G06400), a SWI2/
SNF2 chromatin-remodeling factor, and a BTB scaffold 
protein (AT1G05690) as direct regulators of embryo 
and embryo sac development. CHR11 is involved in 
haploid nuclear proliferation during megagametogen-
esis, and chr11 loss of function blocks the completion 
of the mitotic haploid nuclear divisions and cell ex-
pansion in the female gametophyte (Huanca-Mamani 
et al., 2005). BTB functions redundantly with BT1 and 
BT2 to regulate male and female gametophyte devel-
opment (Robert et al., 2009). Two additional sperm 
cell-expressed genes, RBR1 (AT3G12280) and NO 
VEIN (NOV; AT4G13750), were identified under the 
enriched category of cell fate specification. In the male 
gametophyte, RBR1 is required for the correct differ-
entiation of the male cell types (Chen et al., 2009). It 
also regulates nuclear proliferation in the female ga-
metophyte and promotes germline entry (Zhao et al., 
2017). After fertilization, RBR1 coordinates with MSI1 
to activate the expression of the imprinted genes FIS2 
and FWA through the repression of MET1. NOV is a 
plant-specific nuclear factor that promotes cell fate de-
cisions associated with auxin gradients and maxima to 
establish PIN polarity and patterning (Tsugeki et al., 
2009). nov loss-of-function mutations alter auxin gradi-
ents and early embryo patterning. Thus, the biological 
significance of transcript storage in pollen tubes is likely 

widespread beyond its function in embryogenesis, and 
ongoing research will highlight those yet unidentified 
roles.

It is important to clarify that transcript sequestra-
tion and mRNA storage, irrespective of the mecha-
nism of repression, does not suggest a complete block 
in mRNA translation; rather, it is a posttranscription-
al mechanism that allows the modulation of protein 
abundance as well as long-term transcript storage to 
facilitate immediate translation, particularly in tip 
growth. Therefore, it is unsurprisingly common that 
stored transcripts are highly dynamic between subcel-
lular compartments in a long- and short-term manner, 
and their half-life within storage granules varies across 
development. In pollen tubes, EPPs possess a likely 
function to facilitate immediate translation during tip 
growth and the safekeeping of transcripts with late 
function from cytosolic 5′ to 3′ and 3′ to 5′ exonuclease 
activities (Łabno et al., 2016).

Monosomes as a Potential Mechanism for Translation 
Repression in Pollen

To define the ribosome occupancy pattern during 
pollen dehiscence and pollen tube growth as a mea-
sure of the efficiency of translation, we performed 
polysome profiling analyses and revealed a dominant 
monosome peak with nearly no polysomes in mature 
pollen, further underscoring the fact that mature pol-
len is translationally practically inactive. By contrast, 
polysomal profiling of the PT4 stage showed a compa-
rable abundance of polysomes to monosomes, clearly 
demonstrating resumed translational activity at this 
stage, as expected (Fig. 10). This distinct pollen poly-
some profile of the male gametophyte is similar to that 
of the RNA storage in dormant and embedded seeds 
(Basbouss-Serhal et al., 2015). Furthermore, in neuro-
nal cells of animals, the mRNA-storing granules are 
cemented together with the complete translation ma-
chinery and form heavier fractions peaking beyond 
the polysomal profile (Krichevsky and Kosik, 2001;  
Anderson and Kedersha, 2006; Kiebler and Bassell, 
2006; Buchan, 2014; Hafidh et al., 2014; El Fatimy et al., 
2016). In plants, and in pollen in particular as shown 
here, or in other tip-growing cell types, monosomes seem 
to be the compartment for mRNA storage and could 
represent an efficient mRNA sequestration mechanism 
facilitating the rapid activation of translation upon 
various stimuli. EPPs sediment in much lighter frac-
tions in comparison with the neuronal RNA granules; 
therefore, their commonalities are mainly in their mo-
lecular composition, particularly the translation ma-
chinery, subspecies of ribosomal proteins, translation 
elongation factors, cytoskeleton-associated proteins 
including actin and microtubules, and the nature of 
mRNAs associated with both fractions, including vari-
able 5′UTR and frequent uORFs (Buchan, 2014). In a 
parallel observation, stored transcripts associated with 
EPPs throughout pollen development and in pollen 
tubes often bear a long 5′UTR with multiple uORFs 

Hafidh et al.

 www.plantphysiol.orgon September 10, 2018 - Published by Downloaded from 
Copyright © 2018 American Society of Plant Biologists. All rights reserved.

http://www.plantphysiol.org/cgi/content/full/pp.18.00648/DC1
http://www.plantphysiol.org/cgi/content/full/pp.18.00648/DC1
http://www.plantphysiol.org/cgi/content/full/pp.18.00648/DC1
http://www.plantphysiol.org


Plant Physiol. Vol. 178, 2018  277

(Fig. 8); this is a common characteristic of translation-
ally repressed or stored transcripts interfering with ri-
bosome scanning and translation initiation (Liu et al., 
2012, 2013; Muench et al., 2012; Buchan, 2014). Indeed, 
RNA granules are known to be associated with trans-
lation repressors; however, these factors are yet to be 
identified in plants.

In this study, we observed the similarities between 
EPPs and monosomes particularly in their proteome 
composition and close correlation of transcript dynam-
ics between EPP-POL and monosome-POL samples. 
Such dynamics correlated closely with their transla-
tional status, exemplified here with four genes, INVER-
TASE, FAD2, AT59, and NTP303, and their pre dominant 
abundance at MPG and reduced accumulation during 
pollen tube growth. Together, these observations sug-
gest that the isolated EPPs are, in fact, monosomes 
stalled on late encoded transcripts in a translation-
ally quiescent state. Therefore, we propose that these 
forms of the sequestered monosome-mRNA species, 
most likely also bound by initiation and/or elongation 
factors, represent a very dynamic and regulatable tool 
for the mRNA storage of late transcripts in pollen and 
pollen tubes of tobacco.

CONCLUSION

We performed a thorough transcriptomic and pro-
teomic analysis of stored and translated transcripts and 
their storage ribonucleoprotein particles throughout 
tobacco pollen development and pollen tube growth. 
In this way, we defined a pollen sequestrome as a dis-
tinct and highly dynamic compartment for the stor-
age of stable, translationally repressed transcripts and 
demonstrated its dynamics. We have also proposed 
that EPP complexes in fact represent nontranslating 
monosomes that are the actual form of mRNA seques-
tration. Finally, we have demonstrated that a fraction 
of the tobacco pollen tube-expressed transcripts is reg-
ulated continuously at the posttranscriptional level, 
suggesting the involvement of these long-stored stable 
transcripts in postfertilization development.

MATERIALS AND METHODS

Plant Materials and Growth Conditions

Wild-type tobacco plants (Nicotiana tabacum ‘Samsun’) were used to collect 
tissue samples for all downstream studies. Seeds were sown in a greenhouse 
under short-day conditions at 22°C to 25°C. Adult plants with a fully devel-
oped root system were transplanted to an outdoor greenhouse on ground 
compost and grown under the natural day/night photoperiod from March to 
September. Pollen grains were collected throughout the season, from June to 
September, and their germination rate was monitored.

Collection of Pollen and in Vitro Pollen Tube Cultivation

Tobacco mature pollen was isolated aseptically as described previously 
(Petrů et al., 1964). Flowers were collected 1 d before anthesis. Stamens were 

removed from the flowers into a petri dish to dehisce overnight at room tem-
perature. Dry pollen grains were then filtered through a nylon mesh (Miracloth; 
pore size, 50 μm), weighed, and stored at −20°C. The germination rate of iso-
lated pollen was monitored as described previously (Hafidh et al., 2012b).

For tobacco in vitro pollen tube germination, approximately 10 mg of pol-
len was resuspended in 10 mL of pollen germination medium [SMM-MES: 
0.3 m Suc, 1.6 mm H3BO3, 3 mm Ca(NO3)2·4H2O, 0.8 mm MgSO4·0.7H2O, 1 mm 
KNO3, and 25 mm MES-KOH buffer, pH 5.9; Tupý and Rhová, 1984] and di-
vided into aliquots into conical Erlenmeyer flasks. The 24- and 48-h pollen 
tubes were cultivated with SMM-MES medium supplemented with casein  
(1 mg mL−1). Cultures were incubated in a water-bath shaker at 140 rpm for 2 h 
and then slowed down to 90 rpm for the remaining cultivation time at 26°C in 
the dark. Similar procedures were followed for other pollen tube cultures (13, 
24, and 48 h of cultivation), although under sterile conditions. Aliquots of the 
samples were stained with Aniline Blue and 4′,6-diamidino-2-phenylindole 
and analyzed using a fluorescence microscope. Pollen tubes were vacuum 
filtered, flash frozen in liquid nitrogen, and stored at −80°C prior to RNA ex-
traction. Sporophytic tissues (leaf discs and roots) were collected from juvenile 
plants and also from excavated adult plants. Collected samples were frozen 
immediately in liquid nitrogen.

Subcellular Fractionation

To fractionate POL, EPP, and RNP from developing pollen and in vitro- 
cultivated pollen tubes, immature pollen grains from 20 anthers at corre-
sponding developmental stages or 150 mg of dehisced pollen grains or pollen  
tube pellets were homogenized with low-salt buffer (200 mm Tris-HCl, pH 9, 
25 mm KCl, 60 mm magnesium acetate, 2 mm DTT, 0.5 mm PMSF, 1% [v/v] 
PTE, 1 mm cycloheximide, and 250 mm Suc). The homogenates were centri-
fuged twice (400g, 10 min, 4°C and 23,000g, 15 min, 4°C) to remove cellular 
debris and organelles from the postmitochondrial supernatant (Fig. 1; Honys 
et al., 2009).

The collected postmitochondrial supernatant was loaded on a 30% (w/v) 
Suc cushion with low-salt gradient buffer (40 mm Tris-HCl, pH 8.5, 15 mm 
KCl, 30 mm magnesium acetate, 2 mm DTT, 0.5 mm PMSF, and 1 mm cyclo-
heximide) and centrifuged (298,400g, 3 h 20 min, 4°C; Jurečková et al., 2017). 
The supernatant comprised postpolysomal RNP fraction (free mRNPs), 
whereas the pelleted fraction contained POL and EPP complexes (Fig. 1). 
The postpolysomal supernatant was centrifuged (258,000g, 18 h, 4°C). The 
pellet-constituted fraction of free mRNPs was rinsed with RNase-free water 
and stored at −80°C. To separate POL and EPP complexes, the pelleted mixed 
fraction (POL and EPP complexes) was resuspended in a high-salt EPP buffer 
(200 mm Tris-HCl, pH 9, 500 mm KCl, 2 mm magnesium acetate, 2 mm DTT, 
0.5 mm PMSF, 1% [v/v] PTE, 50 mm EDTA, pH 8, 0.2 mm puromycin, and 
250 mm Suc), loaded on a 30% (w/v) Suc cushion with high-salt EPP gradi-
ent buffer (40 mm Tris-HCl, pH 8.5, 200 mm KCl, 1 mm magnesium acetate, 
2 mm DTT, 0.5 mm PMSF, 50 mm EDTA, pH 8, and 0.2 mm puromycin), and 
centrifuged (298,400g, 3 h 20 min, 4°C). The pellet that constituted EPP com-
plexes was collected, rinsed with RNase-free water, and stored at −80°C. The 
remaining supernatant was centrifuged (258,000g, 18 h, 4°C). The pellet that 
constituted the fraction of polysomes was rinsed with RNase-free water and 
stored at −80°C (Fig. 1).

RNA Extraction, Probe Preparation, and Microarray 
Hybridization

Total RNA was isolated using the Qiagen RNeasy Plant Kit in accordance 
with the manufacturer’s instructions (Qiagen) and treated with DNaseI 
(Promega). RNA was quantified using NanoDrop (Thermo Scientific). Prior to 
shipment, five replicates from each sample were tested using semiquantitative 
RT-PCR with two marker genes, NteIF5A and a constitutive 18S rRNA, for 
reproducibility. RNA concentration, purity, and integrity were assessed using 
an Agilent 2100 Bioanalyzer (Agilent Technologies) at ImaGenes and Imaxio. 
Biotinylated target cRNA was prepared from 66 ng of reverse-transcribed total 
RNA (One-Cycle Target labeling and control reagents; Agilent Technologies). 
Labeled cRNA was fragmented, and 1.65 μg was used for Agilent 44 K Tobacco 
Genome Array hybridization. Hybridized chips were scanned on an Agilent 
High Resolution Microarray Scanner. The data discussed in this article have 
been deposited in NCBI’s Gene Expression Omnibus (Edgar et al., 2002) and 
are accessible through GEO Series accession number GSE114806 (https://
www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE114806).
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Bioinformatics and Statistical Analysis of Agilent 44K 
Tobacco Genome Array Data

All transcriptomic data sets were normalized using freely available dChip 
1.3 software (http://www.dchip.org). The reliability and reproducibility of 
the analyses were ensured by the inclusion of duplicates in each experiment, 
the normalization of all arrays to the median probe intensity level, and the 
use of normalized intensities of all arrays for the calculation of model-based 
gene expression values based on the Perfect Match-only model (Li and Wong, 
2001). For each sample, only probes with the detection call of present in both 
replicates were considered to be expressed.

For systematic comparison of the tissue samples, only a subset of expressed 
genes was considered for analysis. These genes had the detection call of pres-
ent in both biological replicates in all three subcellular fractions as well as in 
the independent total transcriptome. Therefore, only the overlap of genes 
identified as expressed in the total transcriptome and in all three subcellu-
lar fractions was considered further. The corresponding number of expressed 
genes identified in previous transcriptomic studies (Supplemental Fig. S1A; 
Hafidh et al., 2012a, 2012b) and this study supported our confidence that the 
selected approach was appropriate and left most possible false positives out. 
To test the quality of the microarray hybridization, we stringently assessed our 
data sets to justify their reproducibility among replicates and, thus, provided a 
feasible comparison between individual fractions and the total transcriptome.

To determine the quality of the normalized data set and the correlation be-
tween arrays, CLC Genomics Workbench version 4.5.1 (CLC bio) was used to 
visualize the correlation between samples using PCA as well as independently 
using hierarchical clustering. To observe the variance of the distribution of 
the mean expression levels, scatterplots were used for pairwise comparison 
between samples.

Sequences of probes located on the chip were BLASTed against the Nicotia-
na tabacum TN90 cDNA database (Sierro et al., 2013, 2014). Transcripts with the 
best value of score and E value (E ≤ 10−5) were assigned to individual probes. 
The closest Arabidopsis (Arabidopsis thaliana) and tomato (Solanum lycopersi-
cum) homologs were inherited from the original TN90 genome annotation.

To identify transcripts enriched in the EPP and POL fractions in each de-
velopmental stage, we applied the following workflow: (1) false discovery 
rate (FDR)-corrected P (using the t test in the CLC Genomics Workbench) was 
calculated for each probe comparing EPP and POL samples in each stage; (2) 
the threshold P was set as the first decile FDR-corrected P among all probes 
for each stage; and (3) transcripts for which all targeting probes gave FDR- 
corrected P below the threshold were selected for 5′UTR and uORF analy-
ses. Sequences of 5′UTRs and 3′UTRs were determined by the comparison of 
cDNA and coding sequences of the reference tobacco TN90 data sets. The list 
of uORFs was obtained by Python script searching through a 5′ UTR list for 
ATG starting and TAG, TAA, or TGA terminating motifs.

GO Analysis

GO analyses in proteome analyses were performed using the PANTHER 
classification system (http://www.pantherdb.org/data/; Mi et al., 2005). We 
used a statistical overrepresentation test with default settings using the gene 
identifiers of the closest tomato homologs and a tomato reference organism. 
The top GO-slim biological processes in the hierarchy with P ≤ 0.05 are shown. 
GO analysis in transcriptome analyses was performed using DAVID (http://
david.abcc.ncifcrf.gov; Huang et al., 2009) with an EASE score (a modified 
Fisher exact test) cutoff of P ≤ 0.05.

Protein Extraction and Filter‑Aided Sample Preparation 
Processing

Proteins were extracted from fraction samples using SDS (2%)- and DTT 
(100 mm)-containing Tris-HCl (100 mm, pH 7.6) buffer for 30 min at 95°C. Pro-
tein concentration was ascertained by fluorescence. Two microliters of protein 
solutions or Trp standard was added to 400 µL of 8 m urea in 100 mm Tris-
HCl, pH 7.6, and analyzed in a 10-mm quartz cuvette using a Cary Eclipse 
Fluorescence Spectrophotometer. Fluorescence was measured at 295 nm for 
excitation and 350 nm for emission. The slits were set to 10 for excitation and 
emission. Protein solutions were processed by the filter-aided sample prepa-
ration (FASP) method (Wiśniewski et al., 2009, 2011). Approximately 100 µg 
of proteins was mixed with 400 µL of 8 m UA buffer (8 m urea in 100 mm Tris-
HCl, pH 8.5). Half (200 µL) was loaded onto the Microcon 30-kD filter unit 

(Millipore; MILLMRCF0R030). After centrifugation (14,000g, 30 min, 20°C), 
the second part of the mixture was loaded and centrifuged under the same 
conditions. The retained proteins were washed with 100 μL of UA buffer. Af-
ter additional centrifugation (14,000g, 30 min, 20°C), the samples were mixed 
with 100 μL of UA buffer containing 50 mm iodoacetamide and incubated 
in the dark for 30 min. After the next centrifugation step, the samples were 
washed three times with 100 μL of UA buffer and three times with 100 μL 
of 100 mm triethylammonium bicarbonate buffer. Trypsin (sequencing grade; 
Promega) was added onto the filter, and the mixture was incubated overnight 
at 37°C. The tryptic peptides were finally eluted by centrifugation followed by 
two additional elution steps with 100 μL of 50 mm triethylammonium bicar-
bonate buffer. The peptide mixture was dried under vacuum. Dried peptides 
in the FASP tube were resuspended in 50 µL of 50% (w/w) acetonitrile (with 
2.5% [w/w] formic acid) and transferred to LC-MS vials with already added 
polyethylene glycol (2.5 µL of 0.01% [w/w] polyethylene glycol; Stejskal et al., 
2013). The FASP tube was washed again using the same solution (50 µL) and 
subsequently twice with 100% acetonitrile (2 × 100 µL). The combined solution 
was concentrated under vacuum to a volume below 25 µL. Water was used to 
get 25 µL of peptide solution.

LC‑MS/MS Analysis

Tryptic peptide mixtures obtained by FASP were analyzed using the RSLC-
nano system connected to an Orbitrap Elite hybrid spectrometer (Thermo Fish-
er Scientific). Prior to LC separation, tryptic digests were inline concentrated 
and desalted using a trapping column (100 μm × 30 mm) filled with 3.5-μm 
X-Bridge BEH 130 C18 sorbent (Waters). After washing the trapping column 
with 0.1% (w/w) fatty acid (FA), the peptides were eluted (300 nL min−1) from 
the trapping column onto an Acclaim Pepmap100 C18 column (3-µm particles, 
75 μm × 500 mm; Thermo Fisher Scientific) by the following gradient program 
(mobile phase A: 0.1% [w/w] FA in water; mobile phase B: 0.1% [w/w] FA 
in 80% [w/w] acetonitrile): the gradient elution started at 1% (w/w) mobile 
phase B and increased from 1% to 56% (w/w) during the first 100 min (14% in 
the 30th, 30% in the 60th, and 56% in 100th min), then increased linearly to 80% 
(w/w) mobile phase B in the next 5 min and remained in this state for the next 
15 min. Equilibration of the trapping column and the column was done prior 
to sample injection to the sample loop. The analytical column outlet was con-
nected directly to the Nanospray Flex Ion Source (Thermo Fisher Scientific).

MS data were acquired in a data-dependent strategy selecting up to the 
top 10 precursors based on precursor abundance in the survey scan (350–2,000 
m/z). The resolution of the survey scan was 60,000 (400 m/z) with a target val-
ue of 1 × 106 ions, one microscan, and a maximum injection time of 200 ms. 
Higher energy collisional dissociation (HCD) MS/MS spectra were acquired 
with a target value of 50,000 and resolution of 15,000 (400 m/z). The maximum 
injection time for MS/MS was 500 ms. Dynamic exclusion was enabled for 45 s  
after one MS/MS spectra acquisition, and early expiration was disabled. The 
isolation window for MS/MS fragmentation was set to 2 m/z.

The analysis of the mass spectrometric raw data files was carried out us-
ing the Proteome Discoverer software (Thermo Fisher Scientific; version 1.4) 
with in-house Mascot (Matrix Science; version 2.6) and Sequest search en-
gine utilization. MS/MS ion searches were done against a protein database 
downloaded from ftp://ftp.solgenomics.net/genomes/Nicotiana_tabacum/ 
annotation/ (file Ntab-TN90_AYMY-SS_NGS.prot.annot.faa; downloaded 
February 27, 2015) with additional sequences from the cRAP database (down-
loaded from http://www.thegpm.org/crap/). Mass tolerances for peptides 
and MS/MS fragments were 10 ppm and 0.05 D, respectively. Oxidation of Met 
and deamidation (Asn and Gln) as optional modification, carbamidomethyl-
ation of C as fixed modification, and two enzyme (trypsin) missed cleavages 
were set for all searches. Percolator was used for the postprocessing of Mascot 
and Sequest search results. Peptides with FDR (q value) < 1%, rank 1, and at 
least six amino acids were considered. Label-free quantification using protein 
area calculation in Proteome Discoverer was used.

Data from the dataset of Ischebeck et al. (2014) were reprocessed starting 
from raw files using the same pipeline except for these differences: selection of 
10 or six peaks within a mass window of 100 D (to N peaks filter) in each MS/
MS spectrum prior to Mascot or SequestHT search, respectively, and MS and 
MS/MS mass tolerances of 10 ppm and 0.8 D, respectively.

Protein groups with at least five identified peptides in each biological and 
technical replicate were considered for downstream quantitative analyses. 
Next, protein groups associated with the same tomato gene identifier were 
stacked together, and the maximum abundance of such joint protein groups 
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was used. To consider a protein up-regulated in the EPP, POL, or RNP fraction 
of a particular stage, its abundance in that fraction should have been at least 
2-fold higher than its median abundance in the stage. Using this strategy, nine 
groups of up-regulated proteins specific to a certain fraction within the stage 
were selected and analyzed for enriched GO terms.

Polysome Profiling

Polysomes from tobacco mature pollen grains and 4-h in vitro-cultivated 
pollen tubes were isolated with freshly prepared polysome extraction buffer 
(0.2 m Tris-HCl, 0.2 m KCl, 0.25 m EGTA, 0.35 m MgCl2, detergent mix [20% 
(w/w) Brij-35, 20% (w/w) Triton X-100, 20% (w/w) Igepal, and 20% (w/w) 
Tween 20], 1% (w/w) deoxycholate, 1% (w/w) PTE, 5 μm DTT, 10 μg mL−1 cy-
cloheximide, 5 μg mL−1 chloramphenicol, 1× proteasome inhibitor [catalog no. 
MG132; Sigma-Aldrich], and 10 μL mL−1 enzymatic cocktail [catalog no. P9599; 
Sigma-Aldrich]). After pulverization with a mortar and pestle, 3 volumes of 
polysome buffer was added to each sample and incubated on ice for 10 min. 
Samples were centrifuged (17,000g, 10 min, 4°C). An additional 10-min centrif-
ugation was performed to ensure debris-free samples. Polysomes were loaded 
on top of a 5% to 45% (v/w) Suc gradient prepared by BIOCOMP gradient 
master (BioComp Instruments) containing 1.32 m Suc, 1× Suc salts (0.04 m Tris-
HCl, pH 8.4, 0.02 m KCl, and 0.01 m MgCl2), 5 μg mL−1 chloramphenicol, and 
10 μg mL−1 cycloheximide. Ultracentrifugation was performed with Beckman 
Optima XPN-80 using a Beckman SW 41 Ti rotor at 154,300g for 3.5 h at 4°C 
without braking. Fractions were collected using a peristaltic pump (Brandel) 
and a Foxy R1 collector (Teledyne ISCO), and polysome profiles were recorded  
using the UA-6 UV/VIS detection system with a 254-nm filter (Teledyne 
ISCO). All fractions were flash frozen and stored at −80°C until further use.

RNA Extraction from Polysome Profiling

For RNA extraction from polysomal fractions, frozen samples were equili-
brated to room temperature and universal spike RNA (TATAA Biocenter) was 
added to each sample. SDS was added to a final concentration of 1% (w/w). 
One volume of phenol:chloroform (2.5:1) was added, and samples were in-
cubated for 10 min at 65°C with occasional vortexing. Samples were cooled 
on ice for 5 min and spun at 21,900g with a Sigma 2-16K centrifuge for 5 min 
at 4°C. The aqueous layer was removed, and the phenol:chloroform precipi-
tation was repeated as above. The final aqueous layer was mixed with 1 vol-
ume of chloroform:isopropanol (25:1), vortexed for 1 min, incubated for 1 min 
at room temperature, and spun at 21,900g at 4°C for 2 min. To the aqueous 
fractions, 300 mm NaOAC and 2 µL of glycogen (Invitrogen) were added and 
mixed with 2.5 volumes of 100% ethanol. RNA was precipitated overnight at 
−20°C. Samples were then spun at 21,900g at 4°C for 45 min. RNA pellets were 
washed with 75% (w/w) ethanol. Dried pellets were resuspended in 20 µL 
of Tris-HCl, pH 8, and RNA concentrations were determined by Nanodrop 
(Thermo Fisher Scientific). For RT-qPCR analysis of each isolated fraction, total 
RNA was DNase treated (Ambion, Thermo Fisher Scientific) and first-strand 
cDNA was synthesized using the ImPromII Reverse Transcription System 
(Promega). qPCR measurements were obtained using GoTaq qPCR Master 
Mix (Promega) on a LightCycler 480 instrument (Roche). Ct values from each 
fraction were normalized with the TATAA RNA spike crossing point. The list 
of primers can be found in Supplemental Table S13.

Accession Numbers

Accession numbers are presented as tobacco identifier/Arabidopsis  
homolog/Agilent probe as follows: NtREF/SRPP (TA12371/AT1G75020/ 
A_95_P178902); NtLAT59 (BP128327/AT3G53190/A_95_P283783); FAD2 
(CV016252/AT3G12120/A_95_P102907); hnRNP A3 (DV161566/AT-
2G33410/A_95_P244767); NTP303/SKS12 (X61146/AT1G55570/A_95_
P005151); NtLAT52 (EB425604/AT1G58340/A_95_P129172); LIM domain  
protein (EB426388/AT3G55770/A_95_P126982); NTF2 (TA17318/AT3G25150/ 
A_95_P149662); NtDKDM (EB446238/AT4G14710/A_95_P116182); NtLEA  
(DV159065/AT3G15670/A_95_P244692); NtHMA1 (BP530876/AT4G37270/ 
A_95_P090243); PRF5 (X82120/AT2G19770/A_95_P025251); RPS19 (BP526774/
AT5G47320/A_95_P075615); U2AF65B (AJ718624/AT1G60900/A_95_
P241774); NtARDCP (DV157797/AT1G04780/A_95_P029706); NtRPS19 
(BP526774/AT5G47320/A_95_P075615); and NtHMA1 (BP530876/AT4G37270/ 
A_95_P090243). Accession numbers of all the genes mentioned in this work 
together with accession numbers of their homologs in Arabidopsis and  
tomato are listed in their corresponding tables as cited in the text. Raw data 

for microarray gene expression are accessible through GEO Series accession 
number GSE114806 at the Gene Expression Omnibus (https://www.ncbi.nlm.
nih.gov/geo/).

Supplemental Data

The following supplemental materials are available.

Supplemental Figure S1. Quantification of transcriptomic data sets.

Supplemental Figure S2. Validation of transcriptomic data.

Supplemental Figure S3. PCA of total and fraction transcriptomes and a 
sequestrome throughout pollen development and the progamic phase.

Supplemental Figure S4. Validation of microarray data by RT-qPCR in re-
lation to microarray data in all three subcellular fractions demonstrated 
independently for five selected genes.

Supplemental Figure S5. Clustering of gene expression profiles according 
to their translation status.

Supplemental Figure S6. Quantification of fraction proteomes.

Supplemental Figure S7. Dynamics of individual small and large subunit 
ribosomal proteins between EPP and POL fractions during the progamic 
phase.

Supplemental Table S1. Total and fraction transcriptomes in six stages of 
pollen development and the progamic phase.

Supplemental Table S2. Clustering of gene expression profiles according 
to their translation status.

Supplemental Table S3. Expression profiles of transcripts selected in Fig-
ure 3 in six stages of pollen development and the progamic phase.

Supplemental Table S4. Annotation of protein groups including the clos-
est Arabidopsis and tomato homologs.

Supplemental Table S5. Quantitative proteome analysis of tobacco pollen 
total and fraction proteomes.

Supplemental Table S6. Proteomic data of the distribution of ribosomal 
proteins and other proteins involved in translation within three subcel-
lular fractions and in the total proteome.

Supplemental Table S7. PANTHER GO-slim analysis of genes enriched 
in three fraction proteomes in tobacco mature pollen and pollen tubes.

Supplemental Table S8. Transcriptomic data of the distribution of ribo-
somal proteins and other proteins involved in translation within the 
subcellular fractions.

Supplemental Table S9. Enriched GO terms associated with overrepre-
sented motifs identified at the 5′UTR of stored transcripts.

Supplemental Table S10. List of sperm cell-expressed transcripts.

Supplemental Table S11. List of putative sperm cell-specific transcripts.

Supplemental Table S12. Enriched GO terms associated with sperm 
cell-expressed and sperm cell-specific transcripts.

Supplemental Table S13. List of primers used in this study.
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